
Idle virtual machine
detection in FermiCloud

Giovanni Franzini

September 21, 2012

Scientific Computing Division

Grid and Cloud Computing Department

FermiCloud & FermiGrid

● Cloud Computing is the use of computing resources (hardware and

software) that are delivered as a service over a network (typically

the Internet).

● A Cloud creates Virtual Machines (VM) upon request. A VM mimics

a physical computer in all functionalities (e.g. it is accessible

remotely using ssh connections, etc.).

● Here at Fermilab, the Grid and Cloud Computing department

manages two distributed systems:

– FermiCloud A private Cloud providing Infrastructure-as-a-

Service for the Fermilab scientific stakeholders to manage

dynamically allocated services, interactive and batch processing.

– FermiGrid A distributed campus infrastructure that manages

statically allocated compute and storage resources for batch

processing.

Problem Statement

● FermiCloud and FermiGrid can share resources, so it is important to

optimize their individual utilization to maximize available computing

cycles.

● My work focussed on identifying and minimizing idle virtual

machines on FermiCloud. An idle VM is an existing machine that it

not currently providing computing services.

● If the resources occupied by idle Virtual Machines on FermiCloud

were reclaimed, they could be used by FermiGrid to process

scientific data.

● Problem:

How can we identify idle VMs in FermiCloud?

Project overview

● Find a way to identify idle VMs

– Investigate the reuse of existing workload management systems

for compute intensive jobs, such as Condor.

– Develop a software product to address the requirements of the

problem.

● Develop a mechanism to

– Inform the FermiCloud management system (OpenNebula)

about the idleness of the machine.

– Suspend idle VMs.

– Replace the suspended VMs with FermiGrid “worker nodes” to

execute jobs in queue.

Identify an Idle VM

● In order to identify an idle VM, some components and activities of

the machine must be monitored periodically, especially:

– CPU idleness

– Keyboard / Mouse usage

– Network

– I/O

– Virtual Memory

● In Unix, some useful information can be found in special files (like
/proc/uptime), or can be obtained using particular commands

(such as vmstat) offered by the shell.

● Starting from these data, we can create several indexes to detect

the VM status.

Identify an Idle VM

For monitoring the VMs, six indexes were defined:

1) CPU Idle Percentage

Based on /proc/uptime file.

2) Keyboard / pseudo-terminal idle time (from Condor code)

Based on utmp file.

3) Bytes tx and rx by the network interface

4) Iowait ticks

Percentage of time the CPU is idle and there is at least one I/O in

progress (local disk or remotely mounted disk, NFS).

5) Context switches

6) Memory Paged in/out

Computing the Indexes

● CPU idle example.

● At step n:

 Take times from /proc/uptime → total(n), idle(n)

 delta_idle(n) = idle(n) - idle(n-1)

 delta_total(n) = total(n) - total(n-1)

 idle_perc(n) = delta_idle(n) / delta_idle(n)

 avg_idle(n) = (1-α)*idle_perc(n) + α*avg_idle(n-1)

● avg_idle(n) is an EMA (Exponential Moving Average).

It keeps track of the old values of the index, giving more importance

to new values (α < ½).

● The sample time for all the indexes is 60 seconds.

Index in Action: CPU Idle
Prime Number Test (T = 5s)

Index in Action: Network Activity
Ping Test (T = 10s)

Indexes & Idleness Rules

● Rules based on index values can define if a VM is currently idle.

These rules are evaluated periodically (e.g. every hour).

● An example of rule could be:

vm_status = (CPU_idle > 0.98 && pty_idle > 2*60

) ? IDLE : NOT_IDLE

● In order to define these rules, “idle” thresholds for the defined

indexes must be found.

● I considered two ways to define these thresholds:

– experimentally (24 hours VM usage tests);

– using ANFIS (Adaptive Network Fuzzy Interference System).

24 Hours VM Test:
CPU Idle

* according to the tester report

 Not idle*

24 Hours VM Test:
Keyboard / pty Idle Time

 Not idle*
* according to the tester report

24 Hours VM Test
iowait

* according to the tester report

 Not idle*

24 Hours VM Test
Memory Paging in/out

* according to the tester report

 Not idle*

Idleness rule

● An average of the indexes values recorded while the VM was idle,
was performed. This gave us an idea of typical values for the
indexes, when the VM is idle. The “idle” thresholds were defined
starting from these averages.

● These values show an high standard deviation. Different VMs so
may have very different values for the same index.

● Idleness rule used for the final tests is shown in the next slide
(th_index_A is the idle threshold for index_A).

CPU idle
Keyboard/

pty idle time
Bytes tx per

period
Bytes rx per

period
Iowait

Context
switches

per
period

Paging in
per period

Paging out
per period

Avg 0.996 3600 2089906 408922 0.0026 3012 62.43 449.19

Std.Dev. 0.0053 ~ 4147777 2151731 0.0015 3378 313.01 454.68

Idleness rule

SOMEONE_LOGGED = (keyboard_pty != -1);

KEYBOARD_USED = (SOMEONE_LOGGED &&

 keyboard_pty < th_keyboard_pty);

CPU_IDLE = (cpu_idle > th_cpu_idle);

IOWAIT_IDLE = (iowait < th_iowait);

PI_IDLE = (paging_in < th_paging_in);

rule_A = (SOMEONE_LOGGED && !KEYBOARD_USED && CPU_IDLE &&

 IOWAIT_IDLE && PI_IDLE);

rule_B = (!SOMEONE_LOGGED && CPU_IDLE && IOWAIT_IDLE && PI_IDLE);

vm_status = (rule_A || rule_B) ? IDLE : NOT_IDLE;

Final test results

● During the final test, the detector identified idle VMs with 90%

accuracy.

● This is only a first encouraging result. Deeper analysis and

improvements of the idle detector are needed.

● In particular:

– The final test results come from the anaysis of a very little pool

of VMs (30). The majority of them were always idle, only a few of

them were actually used during the test.

– Idle thresholds must be improved, processing data coming from

VMs providing different services (servers, worker nodes, etc.).

– New ways to use the recorded indexes values may be

investigated (use of different averages, recording of the last 60

minute values and processing of these data, etc.).

Conclusions

● Goal: optimize the usage of computing resources at Fermilab by

detecting idle Virtual Machines (VM).

● Idle FermiCloud resources can be reclaimed and used by FermiGrid

to run data processing jobs.

● I have implemented six indexes to expose the activity of a VM.

These indexes are sampled periodically.

● An “idleness” rule was defined, to properly identify an idle VM.

● Running 24 hour tests: friendly users mark down when their VM is

used, while my software record index values and define the VM

status.

● A first prototype of the detector was created, with an accuracy of

90%.

